General Backpropagation Algorithm for Training Second-order Neural Networks

نویسندگان

  • Fenglei Fan
  • Wenxiang Cong
  • Ge Wang
چکیده

The artificial neural network is a popular framework in machine learning. To empower individual neurons, we recently suggested that the current type of neurons could be upgraded to second-order counterparts, in which the linear operation between inputs to a neuron and the associated weights is replaced with a nonlinear quadratic operation. A single second-order neurons already have a strong nonlinear modeling ability, such as implementing basic fuzzy logic operations. In this paper, we develop a general backpropagation algorithm to train the network consisting of second-order neurons. The numerical studies are performed to verify the generalized backpropagation algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing an expert system for differential diagnosis of β-Thalassemia minor and Iron-Deficiency anemia using neural network

Introduction: Artificial neural networks are a type of systems that use very complex technologies and non-algorithmic solutions for problem solving. These characteristics make them suitable for various medical applications. This study set out to investigate the application of artificial neural networks for differential diagnosis of thalassemia minor and iron-deficiency anemia. Methods: It is...

متن کامل

A Comparison of First and Second Order Training Algorithms for Artificial Neural Networks

Minimization methods for training feed-forward networks with Backpropagation are compared. Feedforward network training is a special case of functional minimization, where no explicit model of the data is assumed. Therefore due to the high dimensionality of the data, linearization of the training problem through use of orthogonal basis functions is not desirable. The focus is functional minimiz...

متن کامل

HYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY

The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...

متن کامل

Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks

The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...

متن کامل

A Parallel Implementation of Backpropagation Neural Network on MasPar MP-1

In this paper, we explore the parallel implementation of the backpropagation algorithm with and without hidden layers on MasPar MP-1. This implementation is based on a SIMD architecture, and uses a backpropagation model. Our implementation uses weight batching versus on-line updating of the weights which is used by most serial and parallel implementations of backpropagation. This method results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal for numerical methods in biomedical engineering

دوره   شماره 

صفحات  -

تاریخ انتشار 2017